扫雷世界纪录(飞机是怎么起飞的。)

1、飞机是怎么起飞的。

飞机的起飞原理:主要是机翼上的升力大于飞机自身重力。原理类似风筝的飞行原理。

直升机的起飞原理:螺旋桨的升力大于重力。类似风扇的原理。

详细资料:

(1)飞行原理简介

要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。

一、飞行的主要组成部分及功用

到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:

1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。

2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力

飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:

流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。

伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。

飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。

机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。

飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。

2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。

3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。

4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。

以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。

三、影响升力和阻力的因素

升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。

1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。

2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。

3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。

(二)直升机飞行原理

直升机主要由机体和升力(含旋翼和尾桨)、动力、传动三大系统以及机载飞行设备等组成。旋翼一般由涡轮轴发动机或活塞式发动机通过由传动轴及减速器等组成的机械传动系统来驱动,也可由桨尖喷气产生的反作用力来驱动。目前实际应用的是机械驱动式的单旋翼直升机及双旋翼直升机,其中又以单旋翼直升机数量最多。

直升机的最大速度可达300km/h以上,俯冲极限速度近400km/h,使用升限可达6000m(世界纪录为12450m),一般航程可达600~800km左右。携带机内、外副油箱转场航程可达2000km以上。根据不同的需要直升机有不同的起飞重量。当前世界上投入使用的重型直升机最大的是俄罗斯的米-26(最大起飞重量达56t,有效载荷20t)。

直升机的突出特点是可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行,特别是可在小面积场地垂直起降。由于这些特点使其具有广阔的用途及发展前景。在军用方面已广泛应用于对地攻击、机降登陆、武器运送、后勤支援、战场救护、侦察巡逻、指挥控制、通信联络、反潜扫雷、电子对抗等。在民用方面应用于短途运输、医疗救护、救灾救生、紧急营救、吊装设备、地质勘探、护林灭火、空中摄影等。海上油井与基地间的人员及物资运输是民用的一个重要方面。

目前直升机相对飞机而言,振动和噪声水平较高、维护检修工作量较大、使用成本较高,速度较低,航程较短。直升机今后的发展方向就是在这些方面加以改进。

扫雷世界纪录(飞机是怎么起飞的。)

2、直升飞机的用途是什么?

直升飞机的用途有运输、巡逻、旅游、救护等多个领域。

直升机的突出特点是可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行,特别是可在小面积场地垂直起降。由于这些特点使其具有广阔的用途及发展前景。

在军用方面已广泛应用于对地攻击、机降登陆、武器运送、后勤支援、战场救护、侦察巡逻、指挥控制、通信联络、反潜扫雷、电子对抗等。在民用方面应用于短途运输、医疗救护、救灾救生、紧急营救、吊装设备、地质勘探、护林灭火、空中摄影等。

直升飞机的速度:

直升机的最大时速可达300km/h以上,俯冲极限速度近400km/h,实用升限可达6000米(世界纪录为12450m),一般航程可达600~800km左右。携带机内、外副油箱转场航程可达2000km以上。根据不同的需要直升机有不同的起飞重量。

当前世界上投入使用的重型直升机最大的是俄罗斯的米-26(最大起飞重量达56t,有效载荷20t)。当前实际应用的是机械驱动式的单旋翼直升机及双旋翼直升机,其中又以单旋翼直升机数量最多。

以上内容参考:百度百科—直升飞机

扫雷世界纪录(飞机是怎么起飞的。)

3、Windows扫雷第一步,先戳哪里最高效

Windows系统保证了扫雷的第一步无论点击哪个方块都是安全的。一名普通玩家一上来大概会很随意地点击一个方块,反正不晓得哪个是雷又肯定是安全的,点哪不一样。但对高手来说,却是每一步都要运筹帷幄。

在扫雷游戏中,如果你点击的方块附近都没有地雷,点击的后果就是一片没有雷的区域瞬间展开了,然后我们就可以根据区域边缘的数字慢慢排雷。

于是问题来了:第一步点击什么位置碰到安全区域的几率更大?是角、边还是中间?这当然需要算一算。

金角银边草肚皮

首先不难看出,点击某个方块出现一片安全区域的条件是这个方块的周边没有地雷。假设我们第一次点击的方块处在盘面中间的位置,那么就需要它周围的8个方块都没有雷;如果方块在盘面的4条边上,则是5个方块;在角上是3个方块。

假如我们第一次点击的方块在盘面中间,那么出现安全区域的概率就等于它周围8个方块都没有雷的概率(暂且不论这个安全区域可以有多大)。如下图所示,令N表示盘面上格子的总数,M表示地雷的个数,前面说过因为第一次点击的一定不是雷,所以这时候场上还剩N-1个格子和M个地雷,于是图中右下角那个格子不是雷的概率就是(N-M-1)/(N-1)。

类似地,当前场上还剩N-2个格子和M个雷,所以下一个格子依然不是雷的概率是(N-M-2)/(N-2)。

依此类推,最后可以发现,第一次点击的格子,其周围没有雷的概率是:

对于边和角的情况,推导的过程完全类似,只是上述乘积的项数不一样——边上只有5项,角上只有3项。

根据游戏的设置,将N和M的取值代入这个表达式中,最终可以得到三种难度下三种策略各自出现安全区的可能性大小:

所以得出的结论是,“从角上开局”!

安全区有大有小

当然,看到这里你可能有个疑问,虽然说第一步点击角出现安全区的概率最大,但安全区域的面积也有大有小。一个直观的想法是,虽然角上出现安全区域的可能性最大,但其能扩展出的面积也最受限制,而在中间的位置,虽然安全区出现的可能性最小,但是一旦出现,这个区域可以向四周发散,能扩展出的面积也随之增大。这两个因素相互制约,究竟谁能最终胜出?

我们转而考虑另一个指标,也就是某一个方块被点击后出现的安全区域的平均面积。这个指标在概率论和统计学中称为期望值。但因为安全区域面积的期望大小很难从理论上推导出来,所以在这里我们利用了蒙特卡罗模拟的办法来对它进行计算。其主要流程就是在电脑中模拟很多次扫雷的过程(比如10万次),然后把每一次的结果记录下来,最后做一次平均。

下图是初级模式下游戏开始第一步,点击每个格子出现安全区域的期望面积,可以看出,颜色越浅的地方安全区域面积倾向于越大,在图中即为四个角的位置,平均下来一次可以击出约16个格子。最“差”的地方则是从外向里第二圈的四个顶点,仅为10个格子左右。这其实也符合记录。初级扫雷的世界纪录是1秒,世界上很多人达到了这一点。在1秒的时间里完成初级扫雷其实属于碰运气,最可能的方法就是直接点击4个角的方块。

类似地,中级和高级的图如下所示:

其中颜色最浅的地方都指向了四条边的中心。

所以,如果考虑的是连击区域的大小,那么在初级模式下还是应该优先选择四个角的位置;而对于中级和高级模式,则是边的中心其大小的期望值最大。

模拟结果存在不足

然而上面用蒙特卡罗方法得出的结果却并不就是我们想要的答案。计算机模拟的只是第一步点击哪里出现安全区域的期望面积最大,但实际上,第一次点击出现的安全区域面积越大,下一次点击未知区域出现安全区域的概率也就越小,区域面积也会越小。如果只是贪图第一步捡一个大便宜,而让之后的操作寸步难行,那未免得不偿失。

另一方面,并非每一个扫雷局都是有解的,有时候根据现有的局面,并不能够判断最后剩下的几个方块哪个是雷哪个不是,例如下图这种情况,剩下两个方块各自有雷的概率都是50%。

出现这种情况,除了因为地雷布局的原因,还和游戏者的操作有关。试想辛辛苦苦大半天,最后却只能“谋事在人成事在天”,未免太亏。而如果第一步就点击角落,自然就降低这种局面出现的概率。

对于扫雷游戏来说,首要目的是要排出全部地雷,其次是尽量缩短游戏时间。根据前面的推算,我们知道,首先点击角无疑会让这个游戏变得更为简单和容易,并且也不会为之后的操作带来什么麻烦,作为一名技术流高手,第一步首先点击角落的方块,无疑是最保险和高效的。

4、10秒钟我们可以做什么

10秒钟,弹指一挥间,我们可以做什么?世界上又会发生什么呢?

世界上目前打字最快的人十秒钟敲击134个键

最快的变脸速度:十秒钟变脸50张

十秒钟平均写10个汉字

10秒钟 地球绕太阳转动298公里

10秒钟 人的心脏跳动10次并将600毫升血液输送到体内

10秒钟 猎豹在草原上可飞奔361米

10秒钟 植物中生长最快的竹子长100微米

运动篇(10秒速度)

滑 轮滑最快速度 10秒286米

1998年9月26日,在美国的亚利桑那州,美国的格雷厄姆?维尔基和杰夫?维尔基和杰夫?汉米尔顿都创造了时速103.03公里的轮滑纪录,并得到非传统体育协会的承认。

游 游泳最快速度 10秒19米

毫无疑问,菲尔普斯已经被公认为这个世界上游得最快的人!2008年北京奥运会,美国选手迈?菲尔普斯在男子200米自由泳决赛,以1分42秒96的成绩打破世界纪录,并夺得金牌。他独特的体型无疑保证了他能够在水池中发挥自己的最大天赋。他的短腿和宽臂,配合他那有力的膝关节、踝关节以及灵活的肩肘关节,让人们只能感叹:天生奇才!

骑 在雪地上骑自行车最快速度 10秒583米

奥地利人马库斯?施特克勒创造了一项新的雪地高山自行车速降世界纪录,时速达到了惊人的210公里。当时,他从智利帕尔瓦山上的一条雪道出发,赛道长约2公里,坡度为45度。

骑 骑自行车最快速度 10秒744米

脚踏自行车的最高时速为268.831公里,是1995年10月3曰由荷兰的弗雷德?罗姆贝尔博格在美国犹他州的邦纳维尔盐滩所创。这一纪录的取得在很大程度上得益于他的前导产生的低压气穴。

驾 最快的F1赛车速度 10秒1152米

英美车队成为有史以来速度最快的F1车队。英美车队在美国的加利福尼亚州西南部的莫哈韦机场展开了最后一天的测试,在测试过程中,南非车手范?德?莫维有幸成为F1历史上第一个打破时速400公里的车手。

在当天的测试中,范?德?莫维曾经有三次时速超过400公里,而其最好的成绩则是最后一次创造的,即415公里/小时(即257.88英里/小时)。

走 竞走最快速度 10秒38米

2006年12月2日,澳大利亚著名的男子竞走选手迪克斯在澳大利亚杰隆进行的全国锦标赛中,以3小时35分47秒的成绩打破了男子50公里世界纪录。

本文来自投稿,不代表本站立场,如有侵权联系即删除,站长QQ:192398865:https://www.fulishes.com/94099/

(0)
上一篇 2023年10月30日 下午12:07
下一篇 2023年10月30日 下午12:10

相关推荐